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Abstract

This paper discusses the behavior of liquid flowing in a groove with a trapezoidal cross-section. For fully developed
laminar flow, the conservation of mass and momentum equations reduce to the classic Poisson equation in terms of the
liquid velocity. A finite difference solution was employed to determine the mean velocity, volumetric flow rate, and
Poiseuille number (Po = fRe) as functions of the groove aspect ratio, groove-half angle, meniscus contact angle and
imposed shear stress at the liquid-vapor interface. Comparisons with existing solutions for fully developed flow in
rectangular ducts and rectangular and triangular grooves are provided. The volumetric flow rate in a groove in which
the fill amount varies is discussed. A semi-analytical solution and a two-point numerical solution for the mean velocity
in a groove are presented and used to determine the capillary limit for a revolving helically grooved heat pipe. The
effects of interfacial shear stress and groove fill ratio on heat pipe performance are investigated. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Internally grooved ducts are used in process equip-
ment to improve heat transfer during condensation and
evaporation. In some cases, such as a refrigeration cycle
evaporator or condenser with internal grooves, the
vapor flow is cocurrent with respect to the liquid flow. In
axially grooved heat pipes, the vapor flow is counter-
current to the liquid flow. The interfacial shear stress
due to the cocurrent or countercurrent vapor flow con-
tributes to the liquid pressure drop, which can signifi-
cantly affect the heat transfer capacity of the grooved
surface. The objective of the present research was to
numerically model the flow of liquid in trapezoidal
grooves using a finite difference approach in order to
provide accurate information on the effects of cocurrent
and countercurrent vapor flows on the pressure drop in
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the liquid. This geometry was chosen due to the fact that
rectangular and triangular grooves are special cases of
the trapezoidal groove, thus making the analysis as
general as possible.

DiCola [1] solved the conservation of momentum
equation for the laminar flow of liquid in rectangular
grooves with a uniform shear stress imposed at the liq-
uid-vapor interface using separation of variables. Un-
fortunately, this manuscript is no longer available in the
open literature. Schneider and DeVos [2] provided the
exact solution determined by DiCola [1], along with an
expression for the friction factor which approximates
the exact solution to within 1% by using the first term of
the infinite series solution. This expression was used by
Schneider and DeVos to determine the nondimensional
heat transport capacity of axially grooved heat pipes.
Upon examination of the DiCola equation, it is obvious
that the rectangular groove is completely full, i.e., the
meniscus contact angle is ¢ = 90°.

Ayyaswamy et al. [3] used the Galerkin boundary
method to solve the Poisson equation to determine the
fluid velocity in triangular grooves. In this study, inter-
facial shear stress was zero, and the groove half-angle
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Nomenclature

A, cross-sectional area of the groove, m?

A cross-sectional area of the liquid, m?

Ay area of the liquid—vapor interface, m?

Ay area of the groove wall, m?

A; A/H?

a, radial acceleration vector, m/s’

A acceleration vector at any point in the helical
groove, m/s?

b distance from the liquid-vapor interface to
the bottom of the groove, m

Bo Bond number, pgh?/c

d* parameter defined in Eq. (4)

D diffusion coefficient

Dy hydraulic diameter, 44,/P, m

D; Dy /h

F mean velocity parameter, 470%, m?

F volumetric flow rate parameter, 4/ V*, m*

f friction coefficient, 27 /pv?

g acceleration due to gravity, m/s?

h groove height, m

hig heat of vaporization, J/kg

hy height of the liquid in the groove at the wall,
m

L, adiabatic length, m

L. condenser length, m

L. evaporator length, m

Lot effective heat pipe length, L./2 + L, + L./2,
m

L, pitch length, m

L, total heat pipe length, m

n coordinate normal to the liquid—vapor
interface

n* n/h

N, number of grooves

p pressure, N/m?

P wetted perimeter, m

B, perimeter of the liquid—vapor interface, m

P P/h

B, PJh

Po Poiseuille number, fRe

Qcp  capillary limit heat transport, W

Qg heat transfer due to a single groove, W

O total heat transported, Efvjl .Qg‘,,ﬂ, W

R radius of curvature of the liquid—vapor
interface, m

R, capillary radius, m

Ry radius of the helix, m

R, radius of the heat pipe vapor space, m

R R/h

R; dimensionless radius of curvature at
bifurcation

Re Reynolds number, ptDy, /1

t time, s

Tiat saturation temperature, K

v y-direction velocity, m/s

v mean y-direction velocity, m/s

U, max maximum mean liquid velocity, m/s
Tymax ~ Maximum mean vapor velocity, m/s

v pw/h*(—dp/dy)

v* dimensionless mean y-direction velocity

PA dimensionless mean y-direction velocity
when 1}, =0

vE dimensionless mean y-direction velocity
when 1, =1},

v normalized mean velocity, v* /vy

Ve total groove volume, m?

1 liquid inventory volume, m?

14 volumetric flow rate, ©4;, m?/s

Ve W /[t (—dp/dy)]

w width of the bottom of the groove, m

wy width of the liquid in the groove, m

x, y, z coordinate directions

x* x/h

z* z/h

p groove aspect ratio, w/2h

€ convergence criterion

0 groove half-angle, rad

I absolute viscosity, Pa-s

p density, kg/m?

o surface tension, N/m

h‘\

normalized shear stress at the liquid—vapor
interface, t},/1j,

Ty shear stress at the liquid-vapor interface,
N/m?

Ty Tiv/h(—=dp/dy)

Tho shear stress at the liquid—vapor interface
when v* =0

Thva shear stress value in Fig. 9(a)

Tw average shear stress at the wall, N/m?

& Tw/h(—dp/dy)

¢ meniscus contact angle, rad

o minimum meniscus contact angle, rad

oy meniscus contact angle at bifurcation, rad

and contact angle were varied from 6= 5-60° and
¢ = 0.1° to the full groove condition (0 + ¢ = 90°). The
results were presented graphically and in tabular form,
which included the cross-sectional area, mean velocity,
hydraulic diameter, and Poiseuille number. It was found

that the Poiseuille number increased monotonically with
meniscus contact angle.

Ma et al. [4] determined the Poiseuille number for the
flow of liquid in triangular grooves with liquid-vapor
frictional interaction. The groove half-angle ranged
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from 20 <0< 60° and the meniscus contact angle was
varied from ¢ = 0-60°. The conservation of momentum
equation was transformed into the Laplace equation in
terms of liquid velocity, which was solved using sep-
aration of variables and linear superposition. Difficulties
were encountered with respect to application of the
liquid—vapor interface boundary condition, since the
liquid-vapor interface velocity is an unknown function
of the vapor velocity. The methodology used to over-
come this difficulty required an experimentally deter-
mined coefficient. A dimensionless liquid-vapor
interface flow number was introduced to account for the
interfacial shear stress. This value determined the rela-
tive velocities of the liquid and vapor at the liquid-vapor
interface, which impacted the magnitude of the Pois-
euille number. It was found that the friction factor
increased with the interface flow number and contact
angle. Results from the experiment executed by
Ayyaswamy et al. [3] for no liquid-vapor shear stress
showed an excellent comparison with the analytical
solution over the ranges of groove half-angle and
contact angle mentioned above.

Peterson and Ma [5] performed a follow-up analysis
to that of Ma et al. in which the Poiseuille number for
flow in triangular grooves was determined using the
Nachtsheim-Swigert iteration scheme and a numerical
solution of a two-point boundary value problem. This
allowed the velocity distributions in both the liquid and
vapor to be solved as a coupled problem. Channel angles
of 0 = 10°, 20°, 30° and 40° and meniscus contact angles
of ¢ = 0°, 20°, 40° and 60° were analyzed. It was deter-
mined that the dimensionless liquid-vapor flow number
(previously defined by Ma et al.) was a function of the
vapor velocity and the fluid properties of the liquid and
vapor. An experiment was devised to validate the results
of the numerical model. It was shown that increasing the
countercurrent vapor flow increases the friction factor of
the liquid. The agreement between the experimental data
and the numerical model was quite good.

Romero and Yost [6] analyzed the flow of liquid in a
triangular groove with no shear stress at the liquid—
vapor interface. In particular, the flow from a sessile
drop into the groove was of interest. A nonlinear partial
differential diffusion equation was presented which de-
scribed the time-dependent height of liquid in the groove
in terms of the groove geometry, meniscus contact angle,
and fluid properties. A simplified similarity solution was
presented for the region which was far from the sessile
drop. A full similarity solution was also shown which
accounted for the region near the fluid droplet. It was
found that the wetting front position was proportional
to (Dr)'?, where the diffusion coefficient D was related
to the groove geometry, liquid viscosity, and liquid—
vapor surface tension.

Lin and Faghri [7] modeled the flow of liquid in the
triangular grooves of a rotating miniature heat pipe. A

correlation for the friction factor was provided in terms
of the shear stress at the liquid—vapor interface. The
laminar flow in the triangular groove was solved using a
finite element technique for side lengths ranging from
hv1 +tan?0 = 0.2 to 0.65 mm and liquid—vapor shear
stress 1, = 7.7 x 1075 to 0.055 N/m? for a groove half-
angle of 0 = 20° and meniscus contact angle ¢ = 30°. A
regression analysis was used to represent the data to
within £2.8%.

Khrustalev and Faghri [8] analyzed the fully devel-
oped laminar flow of liquid and vapor in miniature heat
pipes using a finite element solution. In particular, the
case in which the vapor velocity was high and the cross-
sectional areas of the vapor and liquid were comparable
was of interest. It was assumed that, with respect to the
vapor flow, the liquid velocity at the liquid—vapor in-
terface was zero. For the liquid flow, the shear stress at
the interface was equal and opposite to that of the
vapor. This meant that the velocity gradient in the liquid
was related to that of the vapor via a ratio of absolute
viscosities. The momentum equation for the vapor do-
main was first solved to determine the shear stress dis-
tribution at the liquid-vapor interface. Then the
momentum equation for the liquid domain was solved
using the shear stress information from the vapor solu-
tion. The results presented were for a specific heat pipe
geometry that matched a previous experimental study. It
was found that the shear stress at the liquid-vapor in-
terface was not uniform, being greater near the point of
contact with the solid groove wall. This effect was more
significant for smaller values of meniscus contact angle.
In addition, the shear stress at the interface became
more uniform as the vapor space became more re-
stricted.

Kolodziej et al. [9] analyzed the gravity-driven flow
of liquid in a triangular groove with no shear at the
liquid-vapor interface. The shape of the liquid—vapor
interface was determined in terms of the Bond number
and meniscus contact angle. Starting with the Young—
Laplace relation, a nonlinear boundary-value problem
for the liquid-vapor interface shape was solved. The
flow field was then solved for the friction factor using the
boundary collocation method. The range of parameters
was as follows: groove half-angle 0 = 5° to 70°, menis-
cus contact angle ¢ =5° to 45°, and Bond number
Bo = pgh? /o = 0.001, 0.01, 0.1, 1.0 and 5.0, where b is
the vertical distance from the liquid-vapor interface to
the bottom of the groove. It was found that the Bond
number had a significant effect on the friction factor of
the flow.

The objective of the present study was to determine
the mean velocity, volumetric flow rate, and Poiseuille
number for the flow of liquid in trapezoidal grooves.
The effect of vapor flowing over the liquid-vapor in-
terface was accounted for by relating the liquid velocity
gradient to the friction factor of the vapor. This
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approach assumed that the liquid velocity did not affect
the vapor velocity; i.e., the vapor velocity at the interface
was zero. In addition, the variation of the shear stress
along the liquid—-vapor interface was neglected [8]. The
conservation of momentum equation was solved using
Gauss—Seidel iteration with successive over-relaxation.
The analysis was validated using the results of several
previous studies including the flow of liquid in rec-
tangular and triangular grooves with liquid—vapor
interaction. The mean velocity, volumetric flow rate,
and Poiseuille number are presented in terms of the
groove aspect ratio (0<pB<1.5), groove half-angle
(0 <6< 60°), meniscus contact angle (0< ¢ <90° — 0),
and dimensionless shear stress at the liquid—vapor in-
terface (—0.45< 7}, <5.0). The results were used to de-
termine the effects of groove fill amount on the capillary
limit of the revolving helically grooved heat pipe studied
by Castle et al. [10]. The predictions of the improved
capillary limit model were compared to the experimental
data obtained.

2. Mathematical model

A constant property liquid flows steadily in a trap-
ezoidal groove as shown in Fig. 1. A meniscus, which is
assumed to be circular, comprises the liquid—vapor in-
terface. For fully developed laminar flow with no body
forces, the dimensionless conservation of mass and
momentum equations reduce to [11]
azv* azv*

itz b M

On the groove walls, the no-slip condition is in effect.
0<x*<p, z=0,

v'=0:¢ f<x*<f+tanl, z*=(x"—f)cotd for>0,
x*=p, 0<z*<1 for6=0.

(2)

At the line of symmetry, the velocity gradient is zero in
the x* direction

ov*

Gx*:O: =0, 0<z<(1+d")—FR, (3)
where

2
d" =R u(%). (4)

The dimensionless radius of curvature is given by

. 2
sin¢
Pseco for0=0.

(5)
On the liquid-vapor interface, a uniform shear stress in

the y direction is imposed.
ov*
on*
= (14+d") — VR? — x*2. (6)

The dimensional liquid—vapor interface shear stress can
be cast in terms of the friction factor of the vapor.

=1,: 0<x"<f+tanb,

—\2
{p V(;JV) } £ for cocurrent flow,
e P, (w)*
— {%] fo for countercurrent flow.

()
The Poiseuille number of the liquid in the groove is gi-
ven by
_Dbg
2

Po = fRe (8)

z*

(®) —s—]

Fig. 1. Flow of liquid in a trapezoidal groove: (a) coordinate system; (b) solution domain.
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The dimensionless hydraulic diameter is

2{ﬁ+ (B+ tan6)(1 4+ d*) — R* cos™! (d—)]

R
X (B +secl)” for O+ ¢ < /2
2(2f + tan 0) (B +sec0) for 0+ ¢ = /2.

©)

D; =

The mean velocity is defined as
2 p+tan 0 z*

v=— / v*dz" dx*, (10)
A] 0 0

where the dimensionless cross-sectional area is given by

B+ (B+tan0)(1 +d*) — R cos™! (ﬁ)
k7o

for 0+ ¢ < /2,
2f +tan@ for 0+ ¢ = m/2.

A =

3. Numerical model

The elliptic Poisson equation given in Eq. (1) with
mixed boundary conditions (Egs. (2), (3), and (6)) was
solved using Gauss—Seidel iteration with successive over-
relaxation and a central differencing scheme [12]. The
convergence criteria for the iterative solution were set to
€ = 107% for each case. A grid independence check was
made in which the number of grids in each direction was
doubled. When the value for the Poiseuille number did
not change by more than 3%, grid independence was
considered to be reached. The convergence criterion was
then reduced by an order of magnitude while main-
taining the highest number of grids. If the Poiseuille
number did not change by more than 2%, the solution
was considered to be independent of both grid size and e.
Otherwise, a grid independence check was made at the
smaller value of e until a converged solution was ob-
tained. In fact, the grid independence for 423 of the 446
data points reported was less than 1% [13].

The numerical model was tested against several ex-
isting solutions, such as rectangular ducts, triangular
grooves without interfacial shear stress, and rectangular
and triangular grooves with shear stress. See Lykins [13]
for details.

Shah [14] determined the friction factors for the
laminar flow within ducts of various cross-sections using
a least-squares-matching technique. A comparison was
made of the Poiseuille number between the present
solution and those given by Shah [14] and Shah and
London [15] for laminar flow in a family of rectangular
ducts (0 =0°, 0.01<f<1.0). The agreement was ex-
cellent, with a maximum difference of 0.9%.

Ayyaswamy et al. [3] presented the friction factors
obtained for laminar flow in triangular grooves using the
Galerkin method of solution. Romero and Yost [6] de-

rived an equation for the dimensionless volumetric flow
rate of liquid in a triangular groove using asymptotic
methods and a regression analysis. Kolodziej et al. [9]
used the boundary collocation method to solve the same
problem, except that the liquid—vapor interface was not
assumed to be circular. The present solution was com-
pared to that obtained by Ayyaswamy et al. for 0 = 5°
and 60° for the full range of meniscus contact angle
(0.1°< ¢ <90° — 0). The agreement was excellent for
0 = 60°, but was less so for 0 = 5°. This was due to the
extreme narrowness of the flow field for this case. The
maximum percent differences for 6 = 5° and 60° were
3.7% and 0.9%, respectively. In comparison to the re-
sults by Romero and Yost [6], the maximum percent
differences were 2.2% for 6 = 5° and 2.3% for 6 = 60°.
The agreement with the results provided by Kolodziej
et al. for the lowest value of Bond number presented
(Bo =0.001) was less satisfactory, with a maximum
percent difference of 4.5% for 6 =5°, and 19.9% for
0 = 60°. This may be due to the approximate nature of
the solution by Kolodziej et al., which was in terms of a
truncated infinite summation.

DiCola [1] presented the solution for the Poiseuille
number for the laminar flow of a constant property fluid
within a rectangular groove. While interfacial shear
stress at the liquid-vapor interface was accounted for,
the groove was assumed to be completely full, with a
meniscus contact angle of ¢ =90°. The comparison
between the equation by DiCola and the results of the
present analysis for laminar flow in a family of rec-
tangular grooves at the full groove condition (¢ = 90°,
0.1<p<1.0, 7, =-0.1, 0.0, and 1.0) resulted in an
excellent agreement with a maximum percent difference
of 2.3%.

The present model was compared to the correlation
presented by Lin and Faghri [7], where the friction fac-
tor for the flow of liquid in triangular grooves with
liquid—vapor shear was presented. Unfortunately, not
enough information was provided by Lin and Faghri to
precisely determine the limits of applicability for their
equation. Therefore, the correlation was evaluated over
a fairly wide range for comparison with the present
solution. The agreement was quite good between
0.075 < —1j, <0.1, where the maximum percent differ-
ence in this range was 2.2%.

4. Results and discussion
4.1. Parametric analysis

A numerical study has been completed in which the
flow field in a trapezoidal groove has been solved.
Specifically, values of the mean velocity, Poiseuille
number, and volumetric flow rate are reported for var-
ious values of the groove aspect ratio, groove half-angle,
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Fig. 2. Dimensionless velocity fields for laminar flow in trapezoidal grooves (f = 1.0, ¢ = 10°, 0 = 45°): (a) 7}, = 5.0 (cocurrent flow);

(b) 7, = 0.0; (¢) 77, = —0.1 (countercurrent flow).

meniscus contact angle, and dimensionless shear stress
at the liquid-vapor interface. Fig. 2 shows a contour
plot of the dimensionless mean velocity obtained for
cocurrent flow, no shear stress, and countercurrent flow.
The flow behavior changes significantly with shear
stress, where the maximum velocity is located along the
liquid—vapor interface for 7, = 5.0 and 0.0, and within
the interior of the flow field for tj, = —0.1. For count-
ercurrent flow (Fig. 2(c)), a region of reversed flow oc-
curs near the intersection of the groove wall and the
liquid-vapor interface. Depending on the magnitude of
the countercurrent shear stress, the liquid velocity could
be entirely reversed.

Fig. 3 presents the mean velocity versus shear stress
at the liquid-vapor interface for several values of the
groove half-angle. The range of the meniscus contact
angle (0<¢<90°—0) was divided equally to show
the behavior of the mean velocity with ¢. The mean
velocity increases linearly with shear stress since the
flow is aided by 7;,. In addition, v* increases with
groove half-angle and meniscus contact angle, which is
a result of an increase in cross-sectional area. As the
groove half-angle 0 increases, v* becomes more sensi-
tive to the meniscus contact angle ¢ due to the
increased length of the perimeter of the liquid-vapor
interface.

Fig. 4 shows that the Poiseuille number decreases
dramatically as the shear stress at the liquid-vapor
interface increases. For countercurrent flow (t}, <0),
the Poiseuille number is a strong function of shear

stress since the mean velocity approaches zero. In
addition, the Poiseuille number decreases with in-
creasing meniscus contact angle for a given value of
shear stress. For cocurrent flow (t}, > 0), the Poiseuille
number is a lesser function of the shear stress, but
increases significantly with meniscus contact angle. The
Poiseuille number is a weak function of the groove
half-angle.

The volumetric flow rate versus shear stress for
various meniscus contact angles can be seen in Fig. 5.
The volumetric flow rate and mean velocity display
similar trends. The volumetric flow rate is a linear
function of shear stress, and increases with meniscus
contact angle and groove half-angle. The flow rate is
slightly more sensitive than the mean velocity with re-
spect to the meniscus contact angle. The mean velocity
is given as a function of the interfacial shear stress for
a constant meniscus contact angle in Fig. 6. For 0 =0
and 30°, the mean velocity increases and then decreases
with groove aspect ratio. This point can be further
elucidated in Fig. 7, which presents the mean velocity,
Poiseuille number and volumetric flow rate for ¢ = 30°
and 7}, = 5.0. As mentioned previously, the mean ve-
locity increases and then decreases with f for 6< 30°.
This phenomenon also impacts the Poiseuille number
and the volumetric flow rate, where V* attains a
maximum value with respect to f for a given groove
half-angle 0 < 15°. Fig. 8 shows v*, Po, and V* versus 0
for f=1.0 and 7}, = 5.0. In general, these functions
increase significantly with both meniscus contact angle
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Fig. 3. v* versus 7, for laminar flow in trapezoidal grooves
(p=1.0): (a) 0 =0° (b) 8 =30 (c) 6§ = 60°.

and groove half-angle, except for the Poiseuille number
for 6 = 0° and ¢ < 20°.

4.2. Semi-analytical and two-point numerical solutions for
vt

As seen in Figs. 3 and 6, the mean velocity is a
linear function of the imposed shear stress at the lig-
uid—vapor interface. Since a direct numerical simula-
tion of the liquid flow field for a number of values of
the shear stress is computer resource intensive, it is
appropriate to seek a semi-analytical expression for v*.

45 T T T T T
40 |+ :
35
30 |-
25 |-
20
15 |
10 -

Po

45
40
35
30 |-
25 -
20 |-
15 -
10 |-

() |

Po

45
40
35 I-
30 -
25 -
20 -
15 -
10 |-

Po

-1

Fig. 4. Po versus tj, for laminar flow in trapezoidal grooves
(f=1.0): (a) 0 =0% (b) 0 =30°% (c) 0 = 60°.

Fig. 9(a) shows the definition of the parameters in-
volved, where the mean velocity when the shear stress
is zero (0,v) is given by the numerical solution. The
value for the liquid-vapor shear for which the mean
velocity is zero (t},,,0) is given by the following force
balance analysis. Fig. 9(b) shows a differential element
of the liquid in the groove. A force balance between the
pressure drop and the shear forces at the liquid—vapor
interface and at the wall results in the following rela-
tion:

pyAl - py+dyAl + Ay — Tydw = 0. (12)
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Fig. 5. V* versus 71, for laminar flow in trapezoidal grooves
(p=1.0): (a) 0 =0° (b) 6 =30°% (c) 6 = 60°.

The areas over which the shear stresses t;, and 7, act are
Ay = Pydy and 4, = Pdy, respectively. Using these
areas and nondimensionalizing gives

A+ G Py TP =0, (13)
For Poiseuille flow in ducts of arbitrary cross-section,
and combined Couette—Poiseuille flow between flat
plates, the shear stress at the wall is related to the mean
velocity of the fluid by a constant [11]. In the present
analysis, it is assumed that this also holds for the flow of
liquid in a trapezoidal groove with an imposed shear
stress at the liquid—vapor interface.

2.5 T T T T I
(a) ,6 =00 <=
2 F g = (1)13 = .
B=15 -

15 .

Fig. 6. v* versus 7}, for laminar flow in trapezoidal grooves
(¢ =30°): (a) 8 =0°; (b) 6 =30° (c) 6 = 60°.

™= O (14)

It should be noted that the constant C; is probably a
function of the groove geometry and meniscus contact
angle. However, since the objective of this analysis is to
determine the liquid-vapor shear stress when the mean
liquid velocity is zero, this functionality is unimportant.
Substituting this relation into the force balance
equation results in the following expression for mean
velocity
_ 1

v :W(AT +1,B) (15)
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Fig. 7. v, Po and V* versus 0 for laminar flow in trapezoidal
grooves (¢ = 30°, 7, = 5.0).

where the perimeter of the liquid-vapor interface is

f+tan0

2R* sin”!
Sin ( I

) for 0+ ¢ < /2,
P =

v —
2(f+tan@) for 0+ ¢ = n/2.
(16)
The mean velocity is zero when the shear stress at the
liquid—vapor interface is

(17)

Figs. 10(a) and (b) show the results of Eq. (17). The
numerical results shown in Figs. 3 and 6 were extrap-
olated to determine the values for shear stress at the
liquid—-vapor interface when v* = 0. The prediction gi-
ven by Eq. (17) is quite good given the simplicity of the
closed-form solution. The equation for the normalized
mean velocity as a function of the shear stress is given
by

V=05 =1-"1, (18)

where ' = 1}, /1}, ;. The semi-analytical solution for the
normalized mean velocity is shown in Fig. 10(c) with the
corresponding numerical data presented in Figs. 3 and 6.
Eq. (18) predicts 93% of the data to within £30% over
the range of the meniscus contact angle, groove half-
angle, groove aspect ratio and liquid—vapor shear stress
examined in Figs. 3 and 6.

The two-point numerical solution of v* as a function
of 7}, is also shown in Fig. 9(a). The finite difference
numerical model is used to compute the mean velocity
for two values of liquid-vapor shear stress [(0,v;) and
(t}a>v5)]. The equation for the normalized mean
velocity as a function of shear stress using this solution is
given by Eq. (18), and the shear stress when the mean
velocity is zero is

Tiva
o = ————. 19
TlVeO (1 UZ/UB) ( )

4.3. Effect of groove fill ratio

Fig. 11(a) shows the case when liquid evaporates
from a trapezoidal groove. Initially, the groove is full
with ¢ + 6 = 90°. The contact angle decreases until the
minimum meniscus contact angle ¢, for the particular
solid-liquid combination is reached. Past this point,
the meniscus detaches from the top of the groove and
recedes until the lowest part of the meniscus reaches
the bottom of the groove [16]. When the thickness of
the liquid film at the bottom of the groove is on the
order of several hundred Angstroms, forces due to
London-van der Waals interactions with the sur-
rounding liquid and solid molecules induce instabilities
in the fluid [17]. These instabilities cause the liquid in
the groove to bifurcate into two separate flows in the
corners of the groove, which are each equivalent to the
flow in a triangular groove. The liquid in the two
corners of the groove will continue to recede until it is
depleted.

The dimensions of the grooves analyzed by Castle
et al. [10] were used to determine the volumetric flow
rate of ethanol in a trapezoidal copper groove as a
function of the amount of liquid in the groove. The
geometric values of the parametric analysis depicted in
Fig. 11(a) are given by Lykins [13]. Faghri [18] gives
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Fig. 9. Semi-analytical and two-point numerical solutions for v*: (a) definition of parameters; (b) force balance on the liquid in a

trapezoidal groove.

¢y = 7° for a receding meniscus of ethanol on copper.
In terms of the present analysis, as the liquid recedes
into the groove, the groove aspect ratio f§ increases. In
addition, after bifurcation occurs =0, and the
groove half-angle 6 changes to that of the corner of
the groove. A relation for the point at which bifur-
cation occurs is provided where the liquid is assumed
to bifurcate when the lowest part of the meniscus
actually reaches the bottom of the groove. The radius
of curvature at the bifurcation point for a trapezoidal
groove is

R :%[1 +(B+tan0). (20)

The meniscus contact angle at bifurcation as a function
of the groove geometry is

4, =tan"! -1 cosH+2sm 0(p + tan 02)
sin 0 1 — (B +tan0)

-1

—cos 0 . (21)
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w = 0.03445 cm, 0 = 14.62°); (b) definition of variables prior to bifurcation of the liquid; (c) definition of variables after bifurcation of

the liquid.

The radius of curvature of the liquid—vapor in-
terface is shown in Fig. 12(a) as a function of the
groove fill ratio. When the groove is nearly full, the
radius of curvature approaches infinity. As the
amount of liquid in the groove decreases, the radius
of curvature is relatively constant, and then becomes
very small after the liquid bifurcates into the corners
of the groove. Figs. 12(b) and (c) show two flow

parameters, F; and F>, which allow the presentation
of the mean velocity and volumetric flow rate before
and after bifurcation on the same graph. Both flow
parameters increase monotonically with groove fill
ratio, as expected. In Fig. 12(c), for a groove fill ratio
of 4,/4, = 0.158, the volumetric flow rate was 1% of
that for the full groove due to the decrease in
flow area. This figure shows that the groove was
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essentially shut off for 4;/4, <0.158, which was prior
to bifurcation. Using the functional relationship for
mean velocity given by Eq. (15), the volumetric flow
rate is

A7

pe =
C\P

(A + 5 hy)- (22)

When 1}, =0,  oc 47, which confirms that the volu-
metric flow rate should decrease rapidly with decreasing
flow area for 4; < 1.

4.4. Capillary limit analysis for a revolving helically
grooved heat pipe

Using the results of the numerical analysis, the
capillary limit prediction for a revolving helically
grooved heat pipe proposed by Thomas et al. [19] was
improved by accounting for the effects of working fluid
fill amount and the shear stress at the liquid—vapor in-
terface. The improved model was compared to the ex-
perimental data collected by Castle et al. [10], who
determined the capillary limit of a revolving helically
grooved copper—ethanol heat pipe for radial accelera-
tions of | @ |=0.01, 2.0, 4.0, 6.0, 8.0 and 10.0-g and
groove fill ratios of ¥/V, =0.5, 1.0 and 1.5. The di-
mensions of the heat pipe examined by Castle et al. [10]
are given in Table 1. A pressure balance within the heat
pipe results in the following expression for the capillary
limit [18,20]:

Apcap,max = Apv + Apl + Apbf' (23)

The maximum capillary pressure for an axial groove is

g
Apcap.max = R_ . (24)

It is assumed that the capillary limit occurs when the
liquid bifurcates into the corners of the grooves. This
statement is based on the results of the variation of the
volumetric flow rate with groove fill ratio in Fig. 12. The
capillary radius when the liquid bifurcates (R, = 0.02252
cm) was found using Egs. (20) and (21).

For a circular cross-section heat pipe with uniform
heat input and output along the lengths of the evap-
orator and condenser, respectively, the pressure drop in
the vapor is

81t Leir O
Ap, = ——=. 25
npvhng‘\t ( )

Table 1
Specifications of the heat pipe test article examined by Castle
et al. [10]

Groove height, & 0.03831 cm
Groove base width, w 0.03445 cm
Groove half-angle, 0 14.62°
Evaporator length, L. 15.2 cm
Adiabatic length, L, 8.2 cm
Condenser length, L. 15.2 cm
Vapor space radius, R, 0.6795 cm

Number of grooves, N, 50
Helical pitch length, L, 135.8 cm
Helix radius, Ry, 0.6992 cm
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The pressure drop in the liquid was found by using the
normalized mean velocity relation (Eq. (18)) rewritten in
dimensional form.

_ .u]D_l Tiv
= (hfvzﬁhn;;_)dy' 20

In a heat pipe, the liquid flows opposite to the vapor in
all regions. Therefore, the shear stress at the liquid—
vapor interface for countercurrent flow was used
(Eq. (7)). The Poiseuille number of the vapor flow was
modeled as laminar flow within a smooth tube with a
circular cross-section (Po, = 16). Substituting these
relations into Eq. (26) gives

n 4u. 0,
dp = — ( o R )dy. (27)

275 *
kv hRvt

It is assumed that the cross-sectional area of the liquid is
constant along the length of the groove. For a constant
heat flux in both the evaporator and condenser sections,
Eq. (27) can be integrated to determine the total pressure
drop in the helical groove.

_]'nﬂX 4 _Vmax 2 R :
Apl—Lerr('ulUl' -~ AL ) (”) +1.(28)

27 % *
hivg MRy, L,

The maximum liquid velocity in a groove is

— Qg
Dlmax = . 29
T i )

Similarly, the maximum vapor velocity is
O

_— 30
i (30)

Uy max =

where the total heat transported by the heat pipe ac-
counts for the contributions by all of the individual
grooves. Using the above relations, the liquid pressure
drop in a groove as a function of the transported
heat is

. . 3
Apr = Lesy 2'LLLQg _ 4L;th* (27TR11 ) ey
hig \ Bfvgpdr ThiR}pyT, o Ly

(1)

The body forces imposed on the fluid within a particular
groove may either aid or hinder the return of the fluid to
the evaporator, depending on the groove pitch L, and
the circumferential location of the starting point of the
helical groove [19,21]. However, even if the body force
hinders the return of the fluid, each groove contributes
to the heat transported 0,. Therefore, the capillary limit
equation (Eq. (23)) was first solved for the heat trans-

ported by each individual groove Qg, and the results
were summed to determine the total heat transport Q.
Since the pressure drop in the vapor space and the
pressure drop in each groove were functions of the total
heat transport, Eq. (23) was solved iteratively. The body
forces due to acceleration and gravity were integrated
over the length of the groove to find the average pressure
drop [19].

Apbf:—pl[/ouéx;-(—2+{—g}éﬂ>ds} (Z”Rh)ZH.

Ly

(32)

Combining the above relations, the general expression
for the maximum capillary limit for a single helical
groove which accounts for shear stress at the liquid—
vapor interface and the effect of groove fill ratio is
given by

\Y

o
R. = hg | mp R hipdr  ThiRp,T,
2Ry, \°
()
LP
L .
—Pl{/ éxj.(_A+{—g}éZl)dS:|
0

27'ER1, 2
(Tp> +1. (33)

Leff SNth+< ung _ 4/1VQ1 >

A closed-form solution for the capillary limit of a heat
pipe with straight axial grooves and no body forces can
be derived from Eq. (33).

-1

: ohy u 8u, R

Qcap = £ 2—1* + 7 1 — V* .
ReLer | Nghjvgpdr - mp RS 2y,

(34)

Fig. 13(a) shows the results of the closed-form solution
(Eq. (34)). The groove geometry given by Castle et al.
[10] was used, except that straight axial grooves were
assumed (L, — oo) instead of helical grooves. Over the
range of groove fill ratio examined, the capillary limit
increased with 4,/4, by more than three orders of
magnitude. For this case, the semi-analytical solution
and the two-point numerical solution were nearly iden-
tical due to the low vapor velocities, and hence the low
liquid—vapor shear stress. This point is further demon-
strated in Fig. 13(a) by the graph indicated by ‘“No
Shear”, where the term in Eq. (34) that accounts for the
effect of liquid—vapor shear on the liquid was dropped
by allowing 7}, , — —oo. The capillary limit decreases
when shear stress is accounted for, as expected.
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Fig. 13. Maximum heat transport predicted by the closed-form
solution versus groove fill ratio (straight axial grooves, no body
forces, Ty, = 40°C): (a) ethanol; (b) water.

Fig. 13(b) shows the closed-form solution when water is
the working fluid. In this case, the difference between the
results of the two-point numerical solution and the no-
shear solution is much more pronounced due to the
significantly higher vapor velocities involved. The
agreement between the semi-analytical solution and the
two-point numerical solution is quite good. The semi-
analytical solution offers very close results with a
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significantly reduced amount of computer resources
required.

The capillary limit prediction for the helically
grooved heat pipe given by Eq. (33) is shown in Fig. 14
using the semi-analytical solution (Eq. (17)) for
|d@;| = 0.0 and 10.0-g. The capillary limit heat transport
increases both with groove fill ratio and working tem-
perature. In addition, Qcap increases significantly with
the radial acceleration due to the improved liquid
pumping ability of the helical grooves [19].

The experimental data collected by Castle et al. [10]
for the capillary limit of a revolving helically grooved
heat pipe versus radial acceleration rates are shown in
Fig. 15, along with the predictions of the present semi-
analytical model and that given by Castle et al. [10].
During the experiments, the working temperature was
not held constant, so the present model was evaluated
at the saturation temperature reported for a given va-
lue of radial acceleration. For a groove fill ratio of
A1/4, = 0.5 (Fig. 15(a)), the present model more closely
matches the experimental data than the model by
Castle et al. [10], which did not account for the groove
fill ratio or liquid-vapor shear stress. For 4;/4, = 1.0
(Fig. 15(b)), the present model significantly overpre-
dicts the experimental data and the previous model, but
matches the trend in the data quite well, given the
simplicity of the model.

5. Conclusions

A numerical study has been concluded where the
mean velocity, Poiseuille number, and volumetric flow
rate of liquid in a trapezoidal groove have been deter-
mined as functions of groove geometry, meniscus con-
tact angle and shear stress at the liquid—vapor interface.
The mean velocity and volumetric flow rate have been
shown to be linear functions of shear stress, and the
Poiseuille number is a strong function of the shear stress

500 |- X
400 |- >< .
300
200

100

Fig. 14. Maximum heat transport versus groove fill ratio for several working temperatures (ethanol): (a) |@;| = 0.0-g; (b) |@;| = 10.0-g.
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Fig. 15. Maximum heat transport versus radial acceleration: (a) 4,/4, = 0.5; (b) 4;/4, = 1.0.

for countercurrent flow. A semi-analytical solution and
a two-point numerical solution for the mean velocity
were presented and used to predict the capillary limit of
a revolving helically grooved heat pipe for various
groove fill ratios. Interfacial shear stress due to
countercurrent flow in a heat pipe decreases the maxi-
mum heat transport. For cases in which the vapor ve-
locities are high, this effect is more pronounced. The
groove fill ratio was shown to have a significant impact
on heat pipe performance. Underfilling the heat pipe
examined by 10% resulted in a decrease in the predicted
capillary limit by approximately 17-20% for water and
ethanol, respectively.
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